If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54m^2-16=0
a = 54; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·54·(-16)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{6}}{2*54}=\frac{0-24\sqrt{6}}{108} =-\frac{24\sqrt{6}}{108} =-\frac{2\sqrt{6}}{9} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{6}}{2*54}=\frac{0+24\sqrt{6}}{108} =\frac{24\sqrt{6}}{108} =\frac{2\sqrt{6}}{9} $
| 7x+5=3(x-2)-1 | | 5(2x-4)=3(x+8)= | | -20+3y=2y | | {5x+8x=90 | | 17x=11/4 | | 5(x+3)=29 | | 3p+4=21 | | Y=0,y=2.5 | | 9x-11x=176 | | 760=16m+15+9m | | 3p=2(p-5)-(p-1) | | 3(7-2m)=5(2-m) | | 9(y+2)=6(y-3) | | Y=110x+91 | | 121x^2+121x-716=0 | | 121x^2+121x-1432=0 | | Y=110x+4 | | Y=11x+91 | | 2-3z+12=0 | | 5m-3=3m+3 | | 2a-20=20 | | 2(2x-1)=2(2x+29 | | -5m+4=1-2m | | 3(x+2)=37-x | | 3x-7=13+3x | | x2+16x-1=0 | | 1-3x=9-2x | | y×-1=0 | | -1=y/1 | | 4x/5+2=6 | | 48=y*8 | | 15x^2-75x+90=0 |